同余方程$ax\equiv 1(mod\ n)$,$gcd(a,n)=1$时有整数解。这时称求出的$x$为$a$对模$n$的乘法逆元
其实乘法逆元就是一类特殊的同余方程求解,普通的同余方程是$ax\equiv b(mod\ n)$,乘法逆元的其实就是当$b=1$时的解$x$
由$ax\equiv 1(mod\ n)$得:
$$ ax = ny_1 + p\\ 1 = ny_2 + p $$
两式相减$ax-1=n(y_1-y_2)$,移项$ax+ny=1$,所以求乘法逆元也就转换为了求裴蜀方程$ax+ny=1$的解
关于裴蜀方程求解,可以看我的裴蜀等式与扩展欧几里得算法这篇文章
import java.util.Scanner;
public class Main {
static long x, y;
static long exgcd(long a, long b) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
long res = exgcd(b, a % b);
long x1 = x;
x = y;
y = x1 - (a / b) * y;
return res;
}
static long linearEquation(long a, long b, long m) throws Exception {
long d = exgcd(a, b);
if (m % d != 0)
throw new Exception("Impossible");
long n = m / d;
x *= n;
y *= n;
return d;
}
static long inverseElement(long a, long b) throws Exception {
long d = linearEquation(a, b, 1);
x = (x % b + b) % b; // 保证x>0
return d;
}
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
try {
inverseElement(13, 5);
System.out.println(x);
} catch (Exception e) {
System.out.println("Impossible");
}
}
}
例题:HDU1576