子数组累加和为aim(小于等于aim)的三个问题
- 累加和等于aim的最长子数组的长度(数组可正可负可零)
- 累加和等于aim的最长子数组的长度(数组只有正数)
- 累加和小于等于aim的最长子数组的长度(数组可正可负可零)
累加和等于aim的最长子数组的长度(数组可+,-,0)
这道题我另有文章讲解了,这里就不多说了
累加和等于aim的最长子数组的长度(数组只有正数)
这个和上面唯一的不同就是数组中只有正数,这里使用类似窗口移动的做法,给出两个指针,L,R表示窗口的左右边界 ,sum表示的是arr[L,R]之间的累加和,L,R一直往右动。
- 如果窗口内sum < aim,R就往右扩,并且sum += arr[R];
- 如果窗口内sum > aim,L 就往右扩,并且sum -= arr[L];
- 如果窗口内sum = aim, 就说明这个窗口内累加和为sum ,此时记录最大值即可;
public static int getMax(int[] arr,int aim){
if(arr == null || arr.length == 0 || aim < 0)return 0;
int L = 0,R = 0;
int res = 0, sum = arr[0];
while(R < arr.length){
if(sum == aim){
res = Math.max(res,R - L + 1);
sum -= arr[L++];
}else if(sum < aim){//小于等于就往右边扩
if(++R == arr.length) break;
sum += arr[R];
}else { // 大于就往左边扩 sum > aim
sum -= arr[L++];
}
}
return res;
}
累加和小于等于aim的最长子数组的长度(数组可+,-,0)
两个数组sum和ends,sum[i]表示的是以arr[i]开头(必须包含arr[i])的所有子数组的最小累加和,对应的ends[i]表示的是取得这个最小累加和的右边界。 一开始先求出sums数组和ends[]数组。
这个题目最精华的是左右边界不回退,就是说,如果从0位置扩到T区间,T+1区间不能扩了,此时不是回到1位置开始扩,而是舍弃0位置,看能不能由于舍弃0位置把T+1位置加进来:
public static int getMaxLength2(int[] arr,int aim){
if(arr == null || arr.length == 0)return 0;
int[] sums = new int[arr.length]; //以arr[i]开头所有子数组的最小累加和
int[] ends = new int[arr.length]; //取得最小累加和的最右边界
sums[arr.length-1] = arr[arr.length-1];
ends[arr.length-1] = arr.length-1;
for(int i = arr.length - 2; i >= 0; i--){ //求出sums数组和ends数组
if(sums[i+1] < 0){
sums[i] = arr[i] + sums[i+1];
ends[i] = ends[i+1];
}else {
sums[i] = arr[i];
ends[i] = i;
}
}
int sum = 0; //目前的累加和 sum -> R
int R = 0;//每一次扩到的右边界
int res = 0; //答案
for(int start = 0; start < arr.length; start++){//每一次开头
while(R < arr.length && sum + sums[R] <= aim){//一整块一整块的扩
sum += sums[R];
R = ends[R] + 1;
}
sum -= R > start ? arr[start] : 0;//如果R>start,下面start要++了,窗口内减去arr[start]
res = Math.max(res,R - start);//窗口是start ~ R-1 ,所以是长度为R-start
R = Math.max(R,start + 1); //有没有可能扩不出去
}
return res;
}