题目链接:LeetCode84
题解
单调栈板子题,创建一个单调递增栈(栈底到栈顶是递增的),栈内存放的数组下标,遍历数组,将下标存进栈内,以样例来说
首先栈空,0直接进栈;然后因为nums[stack.peek()] > nums[1],所以0出栈了,同时记录以num[0]为高的矩形的面积,当前遍历到的数组下标为i,此时i是1,k等于0出站后,栈顶元素的下标,k= stack.isEmpty() ? -1 : stack.peek(),最终,底的长度就是i-k-1。
如果数组已经遍历到结束了,栈内还有值,就需要将他们依次弹出,此时的i=nums.length(),k=stack.isEmpty() ? -1 : stack.peek()。
整个流程用一个maxArea变量维护,找到最大值即可
代码
class Solution {
public static int largestRectangleArea(int[] heights) {
if(heights == null || heights.length == 0)
return 0;
int maxArea = 0;
Stack<Integer> stack = new Stack<Integer>();
for(int i = 0;i < heights.length;i++) {
while(!stack.isEmpty() && heights[i] <= heights[stack.peek()]) {
int j = stack.pop();
int k = stack.isEmpty() ? -1 : stack.peek();
int curArea = (i - k - 1) * heights[j];
maxArea = Math.max(maxArea,curArea);
}
stack.push(i);
}
while(!stack.isEmpty()) {
int i = heights.length;
int j = stack.pop();
int k = stack.isEmpty() ? -1 : stack.peek();
int curArea = (i - k - 1) * heights[j];
maxArea = Math.max(maxArea,curArea);
}
return maxArea;
}
}
for (int i = 0; i < n; i++) {//递增栈,遇到等于减少计算面积
while (!stack.isEmpty() && num[i] < num[stack.peek()]){ int k = stack.peek(); int countBreadth = i - k; int newHeight = num[stack.pop()]; int countArea = newHeight * countBreadth; maxArea = Math.max(maxArea,countArea); } stack.push(i); } while(!stack.isEmpty()) { int k = stack.peek(); int countBreadth = n - k; int newHeight = num[stack.pop()]; int countArea = newHeight * countBreadth; maxArea = Math.max(maxArea,countArea); } return maxArea;
//递增栈,遇到等于减少计算面积会出bug,条件应改为!stack.isEmpty() && num[i] < num[stack.peek()]