欧氏空间
$V$ 是 $\mathbb {R}$ 上的线性空间,定义映射
$$ \sigma: V\times V \to \mathbb{R} $$
对于 $\alpha, \beta \in V$,将 $\sigma (\alpha, \beta)$ 记为 $\left<\alpha, \beta\right>$,若 $\sigma$ 满足:
- 对称性:$\left<\alpha.\beta\right>=\left<\beta, \alpha\right>$
- (右)齐次性:$\left<\alpha, k\beta\right>=k\left<\alpha,\beta\right>$
- (右)可加性:$\left<\alpha, \beta+\gamma\right>=\left<\alpha,\beta\right>+\left<\alpha, \gamma\right>$
- 非负性:$\left<\alpha,\alpha\right>≥0$,且 $\left<\alpha,\alpha\right>=0\Leftrightarrow\alpha=0$
则称 $\sigma$ 为 $V$ 上的(实)内积,当 $V$ 是有限维时,称其为欧氏空间($\mathbb {R}^n$ 为标准欧氏空间)
实际上 $\alpha$ 是一个向量,$\beta$ 是一个向量,$\left<\alpha, \beta\right>$ 表示向量 $\alpha$ 与向量 $\beta$ 的内积,结果是一个实数
实内积的性质
- (左)齐次性:$\left<k\alpha, \beta\right>=k\left<\alpha,\beta\right>$
- (左)可加性:$\left<\alpha+\beta, \gamma\right>=\left<\alpha,\gamma\right>+\left<\beta, \gamma\right>$
- $\left<k_1\alpha_1+···+k_s\alpha_s,\beta\right>=k_1\left<\alpha_1,\beta\right>+···k_s\left<\alpha_s,\beta\right>$
- $\left<\alpha,k_1\beta_1+···+k_s\beta_s\right>=k_1\left<\alpha,\beta_1\right>+···k_s\left<\alpha,\beta_s\right>$
复内积
$V$ 是 $\mathbb {C}$ 上的线性空间,定义映射
$$ \sigma: V\times V \to \mathbb{C} $$
对于 $\alpha, \beta \in V$,将 $\sigma (\alpha, \beta)$ 记为 $\left<\alpha, \beta\right>$,若 $\sigma$ 满足:
- 共轭对称性:$\left<\alpha.\beta\right>=\overline {\left<\beta, \alpha\right>}$
- (右)齐次性:$\left<\alpha, k\beta\right>=k\left<\alpha,\beta\right>$
- (右)可加性:$\left<\alpha, \beta+\gamma\right>=\left<\alpha,\beta\right>+\left<\alpha, \gamma\right>$
- 非负性:$\left<\alpha,\alpha\right>≥0$,且 $\left<\alpha,\alpha\right>=0\Leftrightarrow\alpha=0$
则称 $\sigma$ 为 $V$ 上的(复)内积,当 $V$ 是有限维时,称其为酉空间($\mathbb {R}^n$ 为标准欧氏空间)
复内积的性质
- (左)齐次性:$\left<k\alpha, \beta\right>=\bar {k}\left<\alpha,\beta\right>$
- (左)可加性:$\left<\alpha+\beta, \gamma\right>=\left<\alpha,\gamma\right>+\left<\beta, \gamma\right>$
- $\left<k_1\alpha_1+···+k_s\alpha_s,\beta\right>=\overline{k_1}\left<\alpha_1,\beta\right>+···\overline{k_s}\left<\alpha_s,\beta\right>$
- $\left<\alpha,k_1\beta_1+···+k_s\beta_s\right>=k_1\left<\alpha,\beta_1\right>+···k_s\left<\alpha,\beta_s\right>$
线性组合的内积的矩阵表示
$\alpha_1,...,\alpha_s;\beta_1,...,\beta_t$ 是 $\mathbb {C}$ 上的内积空间 $V$ 中的两个向量组,则
$$ \begin{aligned} \left<k_1\alpha_1+···+k_s\alpha_s,l_1\beta_1+···+l_t\beta_t\right>\\ =(\overline{k_1},...,\overline{k_s})\begin{bmatrix}\left<\alpha_1,\beta_1\right>&\cdots &\left<\alpha_1,\beta_t\right>\\ \vdots & \ddots &\vdots \\\left<\alpha_s,\beta_1\right> &\cdots & \left<\alpha_s,\beta_t\right>\end{bmatrix}\begin{bmatrix}l_1\\ \vdots \\ l_t\end{bmatrix} \end{aligned} $$
Gram 矩阵
$\alpha_1,...,\alpha_s;\beta_1,...,\beta_t$ 是 $\mathbb {C}$ 上的内积空间 $V$ 中的两个向量组,则
$$ \begin{bmatrix}\left<\alpha_1,\beta_1\right>&\cdots &\left<\alpha_1,\beta_t\right>\\ \vdots & \ddots &\vdots \\\left<\alpha_s,\beta_1\right> &\cdots & \left<\alpha_s,\beta_t\right>\end{bmatrix} $$
称为 $\alpha_1,...,\alpha_s;\beta_1,...,\beta_t$ 的协 Gram 矩阵,记为 $G (\alpha_1,...,\alpha_s;\beta_1,...,\beta_t)$
$\alpha_1,...,\alpha_s$ 是 $\mathbb {C}$ 上的内积空间 $V$ 中的一个向量组,则
$$ \begin{bmatrix}\left<\alpha_1,\beta_1\right>&\cdots &\left<\alpha_1,\beta_t\right>\\ \vdots & \ddots &\vdots \\\left<\alpha_s,\beta_1\right> &\cdots & \left<\alpha_s,\beta_t\right>\end{bmatrix} $$
称为 $\alpha_1,...,\alpha_s$ 的 Gram 矩阵,记为 $G (\alpha_1,...,\alpha_s)$
$\alpha_1,...,\alpha_s$ 是 $\mathbb {C}^n$ 中的一个向量组,记 $A=(\alpha_1,...,\alpha_s)$,则
$$ G(\alpha_1,...,\alpha_s)=A^HA $$
其中,$A^H=(\bar {A})^T=\overline {(A^T)}$
$\alpha_1,...,\alpha_s$ 是 $\mathbb {R}^n$ 中的一个向量组,记 $A=(\alpha_1,...,\alpha_s)$,则
$$ G(\alpha_1,...,\alpha_s)=A^TA $$
$\alpha_1,...,\alpha_s;\beta_1,...,\beta_t$ 是 $\mathbb {C}$ 上的内积空间 $V$ 中的两个向量组,如果 $\alpha_1,...,\alpha_s$ 可由 $\beta_1,...,\beta_t$ 线性表出,且
$$ (\alpha_1,...,\alpha_s)=(\beta_1,...,\beta_t)A $$
则
$$ G(\alpha_1,...,\alpha_s)=A^HG(\beta_1,...,\beta_t)A $$
Gram 矩阵的性质
- $\mathrm{rank}(G)=\mathrm{rank}(\alpha_1,...,\alpha_s)$
- Hermite 性:$G^H=G$
- 非负性:$\forall x\in \mathbb {C}^s$,复二次型 $x^HGx≥0$,并且 $G$ 正定 $\Leftrightarrow \alpha_1,...,\alpha_s$ 线性无关