本文介绍一下如何使用 PyTorch 复现 TextRNN,实现预测一句话的下一个词
参考这篇论文 Finding Structure in Time(1990),如果你对 RNN 有一定的了解,实际上不用看,仔细看我代码如何实现即可。如果你对 RNN 不太了解,请仔细阅读我这篇文章 RNN Layer,结合 PyTorch 讲的很详细
现在问题的背景是,我有 n 句话,每句话都由且仅由 3 个单词组成。我要做的是,将每句话的前两个单词作为输入,最后一词作为输出,训练一个 RNN 模型
导库
- '''
- code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
- '''
- import torch
- import numpy as np
- import torch.nn as nn
- import torch.optim as optim
- import torch.utils.data as Data
-
- dtype = torch.FloatTensor
准备数据
- sentences = [ "i like dog", "i love coffee", "i hate milk"]
-
- word_list = " ".join(sentences).split()
- vocab = list(set(word_list))
- word2idx = {w: i for i, w in enumerate(vocab)}
- idx2word = {i: w for i, w in enumerate(vocab)}
- n_class = len(vocab)
预处理数据,构建 Dataset,定义 DataLoader,输入数据用 one-hot 编码
- # TextRNN Parameter
- batch_size = 2
- n_step = 2 # number of cells(= number of Step)
- n_hidden = 5 # number of hidden units in one cell
-
- def make_data(sentences):
- input_batch = []
- target_batch = []
-
- for sen in sentences:
- word = sen.split()
- input = [word2idx[n] for n in word[:-1]]
- target = word2idx[word[-1]]
-
- input_batch.append(np.eye(n_class)[input])
- target_batch.append(target)
-
- return input_batch, target_batch
-
- input_batch, target_batch = make_data(sentences)
- input_batch, target_batch = torch.Tensor(input_batch), torch.LongTensor(target_batch)
- dataset = Data.TensorDataset(input_batch, target_batch)
- loader = Data.DataLoader(dataset, batch_size, True)
以上的代码我想大家应该都没有问题,接下来就是定义网络架构
- class TextRNN(nn.Module):
- def __init__(self):
- super(TextRNN, self).__init__()
- self.rnn = nn.RNN(input_size=n_class, hidden_size=n_hidden)
- # fc
- self.fc = nn.Linear(n_hidden, n_class)
-
- def forward(self, hidden, X):
- # X: [batch_size, n_step, n_class]
- X = X.transpose(0, 1) # X : [n_step, batch_size, n_class]
- out, hidden = self.rnn(X, hidden)
- # out : [n_step, batch_size, num_directions(=1) * n_hidden]
- # hidden : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
- out = out[-1] # [batch_size, num_directions(=1) * n_hidden] ⭐
- model = self.fc(out)
- return model
-
- model = TextRNN()
- criterion = nn.CrossEntropyLoss()
- optimizer = optim.Adam(model.parameters(), lr=0.001)
以上代码每一步都值得说一下,首先是 nn.RNN(input_size, hidden_size)
的两个参数,input_size
表示每个词的编码维度,由于我是用的 one-hot 编码,而不是 WordEmbedding,所以 input_size
就等于词库的大小 len(vocab)
,即 n_class
。然后是 hidden_size
,这个参数没有固定的要求,你想将输入数据的维度转为多少维,就设定多少
对于通常的神经网络来说,输入数据的第一个维度一般都是 batch_size。而 PyTorch 中 nn.RNN()
要求将 batch_size 放在第二个维度上,所以需要使用 x.transpose(0, 1)
将输入数据的第一个维度和第二个维度互换
然后是 rnn 的输出,rnn 会返回两个结果,即上面代码的 out 和 hidden,关于这两个变量的区别,我在之前的博客也提到过了,如果不清楚,可以看我上面提到的 RNN Layer 这篇博客。这里简单说就是,out 指的是下图的红框框起来的所有值;hidden 指的是下图蓝框框起来的所有值。我们需要的是最后时刻的最后一层输出,即 $Y_3$ 的值,所以使用 out=out[-1]
将其获取
剩下的部分就比较简单了,训练测试即可
- # Training
- for epoch in range(5000):
- for x, y in loader:
- # hidden : [num_layers * num_directions, batch, hidden_size]
- hidden = torch.zeros(1, x.shape[0], n_hidden)
- # x : [batch_size, n_step, n_class]
- pred = model(hidden, x)
-
- # pred : [batch_size, n_class], y : [batch_size] (LongTensor, not one-hot)
- loss = criterion(pred, y)
- if (epoch + 1) % 1000 == 0:
- print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- input = [sen.split()[:2] for sen in sentences]
- # Predict
- hidden = torch.zeros(1, len(input), n_hidden)
- predict = model(hidden, input_batch).data.max(1, keepdim=True)[1]
- print([sen.split()[:2] for sen in sentences], '->', [idx2word[n.item()] for n in predict.squeeze()])
完整代码如下
- '''
- code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
- '''
- import torch
- import numpy as np
- import torch.nn as nn
- import torch.optim as optim
- import torch.utils.data as Data
-
- dtype = torch.FloatTensor
-
- sentences = [ "i like dog", "i love coffee", "i hate milk"]
-
- word_list = " ".join(sentences).split()
- vocab = list(set(word_list))
- word2idx = {w: i for i, w in enumerate(vocab)}
- idx2word = {i: w for i, w in enumerate(vocab)}
- n_class = len(vocab)
-
- # TextRNN Parameter
- batch_size = 2
- n_step = 2 # number of cells(= number of Step)
- n_hidden = 5 # number of hidden units in one cell
-
- def make_data(sentences):
- input_batch = []
- target_batch = []
-
- for sen in sentences:
- word = sen.split()
- input = [word2idx[n] for n in word[:-1]]
- target = word2idx[word[-1]]
-
- input_batch.append(np.eye(n_class)[input])
- target_batch.append(target)
-
- return input_batch, target_batch
-
- input_batch, target_batch = make_data(sentences)
- input_batch, target_batch = torch.Tensor(input_batch), torch.LongTensor(target_batch)
- dataset = Data.TensorDataset(input_batch, target_batch)
- loader = Data.DataLoader(dataset, batch_size, True)
-
- class TextRNN(nn.Module):
- def __init__(self):
- super(TextRNN, self).__init__()
- self.rnn = nn.RNN(input_size=n_class, hidden_size=n_hidden)
- # fc
- self.fc = nn.Linear(n_hidden, n_class)
-
- def forward(self, hidden, X):
- # X: [batch_size, n_step, n_class]
- X = X.transpose(0, 1) # X : [n_step, batch_size, n_class]
- out, hidden = self.rnn(X, hidden)
- # out : [n_step, batch_size, num_directions(=1) * n_hidden]
- # hidden : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
- out = out[-1] # [batch_size, num_directions(=1) * n_hidden] ⭐
- model = self.fc(out)
- return model
-
- model = TextRNN()
- criterion = nn.CrossEntropyLoss()
- optimizer = optim.Adam(model.parameters(), lr=0.001)
-
- # Training
- for epoch in range(5000):
- for x, y in loader:
- # hidden : [num_layers * num_directions, batch, hidden_size]
- hidden = torch.zeros(1, x.shape[0], n_hidden)
- # x : [batch_size, n_step, n_class]
- pred = model(hidden, x)
-
- # pred : [batch_size, n_class], y : [batch_size] (LongTensor, not one-hot)
- loss = criterion(pred, y)
- if (epoch + 1) % 1000 == 0:
- print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- input = [sen.split()[:2] for sen in sentences]
- # Predict
- hidden = torch.zeros(1, len(input), n_hidden)
- predict = model(hidden, input_batch).data.max(1, keepdim=True)[1]
- print([sen.split()[:2] for sen in sentences], '->', [idx2word[n.item()] for n in predict.squeeze()])
for epoch in range(5000):
for x, y in loader: # hidden : [num_layers * num_directions, batch, hidden_size] hidden = torch.zeros(1, x.shape[0], n_hidden) # x : [batch_size, n_step, n_class] pred = model(hidden, x)up 主你好,训练过程中 hidden = torch.zeros (1, x.shape [0], n_hidden),每一个 batch 循环都在重建新的空白的 hidden 矩阵,那么循环训练岂不是在一定程度上相当于白训练了呢?
第一个 LSTM 单元要得到输出,需要 h_0 和 x_0, 所以你提到的,是对 h_0 的初始化,而不是我们最终得到的 h_t
我想问一下这些预测,为什么只能用它训练时候的文本进行预测,换成别的就不行了呢
你没学过西班牙语,你会说吗
不好意思,我刚入门,那那些用别的也可以预测用的是什么技术?
预训练模型
笑死我了