本文介绍一下如何使用PyTorch复现TextRNN,实现预测一句话的下一个词
参考这篇论文Finding Structure in Time(1990),如果你对RNN有一定的了解,实际上不用看,仔细看我代码如何实现即可。如果你对RNN不太了解,请仔细阅读我这篇文章RNN Layer,结合PyTorch讲的很详细
现在问题的背景是,我有n句话,每句话都由且仅由3个单词组成。我要做的是,将每句话的前两个单词作为输入,最后一词作为输出,训练一个RNN模型
导库
'''
code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
'''
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
dtype = torch.FloatTensor
准备数据
sentences = [ "i like dog", "i love coffee", "i hate milk"]
word_list = " ".join(sentences).split()
vocab = list(set(word_list))
word2idx = {w: i for i, w in enumerate(vocab)}
idx2word = {i: w for i, w in enumerate(vocab)}
n_class = len(vocab)
预处理数据,构建Dataset,定义DataLoader,输入数据用one-hot编码
# TextRNN Parameter
batch_size = 2
n_step = 2 # number of cells(= number of Step)
n_hidden = 5 # number of hidden units in one cell
def make_data(sentences):
input_batch = []
target_batch = []
for sen in sentences:
word = sen.split()
input = [word2idx[n] for n in word[:-1]]
target = word2idx[word[-1]]
input_batch.append(np.eye(n_class)[input])
target_batch.append(target)
return input_batch, target_batch
input_batch, target_batch = make_data(sentences)
input_batch, target_batch = torch.Tensor(input_batch), torch.LongTensor(target_batch)
dataset = Data.TensorDataset(input_batch, target_batch)
loader = Data.DataLoader(dataset, batch_size, True)
以上的代码我想大家应该都没有问题,接下来就是定义网络架构
class TextRNN(nn.Module):
def __init__(self):
super(TextRNN, self).__init__()
self.rnn = nn.RNN(input_size=n_class, hidden_size=n_hidden)
# fc
self.fc = nn.Linear(n_hidden, n_class)
def forward(self, hidden, X):
# X: [batch_size, n_step, n_class]
X = X.transpose(0, 1) # X : [n_step, batch_size, n_class]
out, hidden = self.rnn(X, hidden)
# out : [n_step, batch_size, num_directions(=1) * n_hidden]
# hidden : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
out = out[-1] # [batch_size, num_directions(=1) * n_hidden] ⭐
model = self.fc(out)
return model
model = TextRNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
以上代码每一步都值得说一下,首先是nn.RNN(input_size, hidden_size)
的两个参数,input_size
表示每个词的编码维度,由于我是用的one-hot编码,而不是WordEmbedding,所以input_size
就等于词库的大小len(vocab)
,即n_class
。然后是hidden_size
,这个参数没有固定的要求,你想将输入数据的维度转为多少维,就设定多少
对于通常的神经网络来说,输入数据的第一个维度一般都是batch_size。而PyTorch中nn.RNN()
要求将batch_size放在第二个维度上,所以需要使用x.transpose(0, 1)
将输入数据的第一个维度和第二个维度互换
然后是rnn的输出,rnn会返回两个结果,即上面代码的out和hidden,关于这两个变量的区别,我在之前的博客也提到过了,如果不清楚,可以看我上面提到的RNN Layer这篇博客。这里简单说就是,out指的是下图的红框框起来的所有值;hidden指的是下图蓝框框起来的所有值。我们需要的是最后时刻的最后一层输出,即$Y_3$的值,所以使用out=out[-1]
将其获取
剩下的部分就比较简单了,训练测试即可
# Training
for epoch in range(5000):
for x, y in loader:
# hidden : [num_layers * num_directions, batch, hidden_size]
hidden = torch.zeros(1, x.shape[0], n_hidden)
# x : [batch_size, n_step, n_class]
pred = model(hidden, x)
# pred : [batch_size, n_class], y : [batch_size] (LongTensor, not one-hot)
loss = criterion(pred, y)
if (epoch + 1) % 1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
optimizer.zero_grad()
loss.backward()
optimizer.step()
input = [sen.split()[:2] for sen in sentences]
# Predict
hidden = torch.zeros(1, len(input), n_hidden)
predict = model(hidden, input_batch).data.max(1, keepdim=True)[1]
print([sen.split()[:2] for sen in sentences], '->', [idx2word[n.item()] for n in predict.squeeze()])
完整代码如下
'''
code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
'''
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
dtype = torch.FloatTensor
sentences = [ "i like dog", "i love coffee", "i hate milk"]
word_list = " ".join(sentences).split()
vocab = list(set(word_list))
word2idx = {w: i for i, w in enumerate(vocab)}
idx2word = {i: w for i, w in enumerate(vocab)}
n_class = len(vocab)
# TextRNN Parameter
batch_size = 2
n_step = 2 # number of cells(= number of Step)
n_hidden = 5 # number of hidden units in one cell
def make_data(sentences):
input_batch = []
target_batch = []
for sen in sentences:
word = sen.split()
input = [word2idx[n] for n in word[:-1]]
target = word2idx[word[-1]]
input_batch.append(np.eye(n_class)[input])
target_batch.append(target)
return input_batch, target_batch
input_batch, target_batch = make_data(sentences)
input_batch, target_batch = torch.Tensor(input_batch), torch.LongTensor(target_batch)
dataset = Data.TensorDataset(input_batch, target_batch)
loader = Data.DataLoader(dataset, batch_size, True)
class TextRNN(nn.Module):
def __init__(self):
super(TextRNN, self).__init__()
self.rnn = nn.RNN(input_size=n_class, hidden_size=n_hidden)
# fc
self.fc = nn.Linear(n_hidden, n_class)
def forward(self, hidden, X):
# X: [batch_size, n_step, n_class]
X = X.transpose(0, 1) # X : [n_step, batch_size, n_class]
out, hidden = self.rnn(X, hidden)
# out : [n_step, batch_size, num_directions(=1) * n_hidden]
# hidden : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
out = out[-1] # [batch_size, num_directions(=1) * n_hidden] ⭐
model = self.fc(out)
return model
model = TextRNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Training
for epoch in range(5000):
for x, y in loader:
# hidden : [num_layers * num_directions, batch, hidden_size]
hidden = torch.zeros(1, x.shape[0], n_hidden)
# x : [batch_size, n_step, n_class]
pred = model(hidden, x)
# pred : [batch_size, n_class], y : [batch_size] (LongTensor, not one-hot)
loss = criterion(pred, y)
if (epoch + 1) % 1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
optimizer.zero_grad()
loss.backward()
optimizer.step()
input = [sen.split()[:2] for sen in sentences]
# Predict
hidden = torch.zeros(1, len(input), n_hidden)
predict = model(hidden, input_batch).data.max(1, keepdim=True)[1]
print([sen.split()[:2] for sen in sentences], '->', [idx2word[n.item()] for n in predict.squeeze()])
for epoch in range(5000):
for x, y in loader: # hidden : [num_layers * num_directions, batch, hidden_size] hidden = torch.zeros(1, x.shape[0], n_hidden) # x : [batch_size, n_step, n_class] pred = model(hidden, x)up主你好,训练过程中hidden = torch.zeros(1, x.shape[0], n_hidden),每一个batch循环都在重建新的空白的hidden矩阵,那么循环训练岂不是在一定程度上相当于白训练了呢?
第一个LSTM单元要得到输出,需要h_0和x_0,所以你提到的,是对h_0的初始化,而不是我们最终得到的h_t
我想问一下这些预测,为什么只能用它训练时候的文本进行预测,换成别的就不行了呢
你没学过西班牙语,你会说吗
不好意思,我刚入门,那那些用别的也可以预测用的是什么技术?
预训练模型
笑死我了