MENU

TextCNN的PyTorch实现

June 25, 2020 • Read: 22702 • Deep Learning阅读设置

B站视频讲解

本文主要介绍一篇将CNN应用到NLP领域的一篇论文 Convolutional Neural Networks for Sentence Classification,然后给出 PyTorch 实现

论文比较短,总体流程也不复杂,最主要的是下面这张图,只要理解了这张图,就知道如何写代码了。如果你不了解CNN,请先看我的这篇文章CS231n笔记:通俗理解CNN

下图的feature map是将一句话中的各个词通过WordEmbedding得到的,feature map的宽为embedding的维度,长为一句话的单词数量。例如下图中,很明显就是用一个6维的向量去编码每个词,并且一句话中有9个词

之所以有两张feature map,你可以理解为batchsize为2

其中,红色的框代表的就是卷积核。而且很明显可以看出,这是一个长宽不等的卷积核。有意思的是,卷积核的宽可以认为是n-gram,比方说下图卷积核宽为2,所以同时考虑了"wait"和"for"两个单词的词向量,因此可以认为该卷积是一个类似于bigram的模型

后面的部分就是传统CNN的步骤,激活、池化、Flatten,没什么好说的

代码实现(PyTorch版)

源码来自于 nlp-tutorial,我在其基础上进行了修改(原本的代码感觉有很多问题)

'''
  code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
'''
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torch.nn.functional as F

dtype = torch.FloatTensor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

下面代码就是定义一些数据,以及设置一些常规参数

# 3 words sentences (=sequence_length is 3)
sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
labels = [1, 1, 1, 0, 0, 0]  # 1 is good, 0 is not good.

# TextCNN Parameter
embedding_size = 2
sequence_length = len(sentences[0]) # every sentences contains sequence_length(=3) words
num_classes = len(set(labels))  # num_classes=2
batch_size = 3

word_list = " ".join(sentences).split()
vocab = list(set(word_list))
word2idx = {w: i for i, w in enumerate(vocab)}
vocab_size = len(vocab)

数据预处理

def make_data(sentences, labels):
  inputs = []
  for sen in sentences:
      inputs.append([word2idx[n] for n in sen.split()])

  targets = []
  for out in labels:
      targets.append(out) # To using Torch Softmax Loss function
  return inputs, targets

input_batch, target_batch = make_data(sentences, labels)
input_batch, target_batch = torch.LongTensor(input_batch), torch.LongTensor(target_batch)

dataset = Data.TensorDataset(input_batch, target_batch)
loader = Data.DataLoader(dataset, batch_size, True)

构建模型

class TextCNN(nn.Module):
    def __init__(self):
        super(TextCNN, self).__init__()
        self.W = nn.Embedding(vocab_size, embedding_size)
        output_channel = 3
        self.conv = nn.Sequential(
            # conv : [input_channel(=1), output_channel, (filter_height, filter_width), stride=1]
            nn.Conv2d(1, output_channel, (2, embedding_size)),
            nn.ReLU(),
            # pool : ((filter_height, filter_width))
            nn.MaxPool2d((2, 1)),
        )
        # fc
        self.fc = nn.Linear(output_channel, num_classes)

    def forward(self, X):
      '''
      X: [batch_size, sequence_length]
      '''
      batch_size = X.shape[0]
      embedding_X = self.W(X) # [batch_size, sequence_length, embedding_size]
      embedding_X = embedding_X.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]
      conved = self.conv(embedding_X) # [batch_size, output_channel*1*1]
      flatten = conved.view(batch_size, -1)
      output = self.fc(flatten)
      return output

下面详细介绍一下数据在网络中流动的过程中维度的变化。输入数据是个矩阵,矩阵维度为[batch_size, seqence_length],输入矩阵的数字代表的是某个词在整个词库中的索引(下标)

首先通过Embedding层,也就是查表,将每个索引转为一个向量,比方说12可能会变成[0.3,0.6,0.12,...],因此整个数据无形中就增加了一个维度,变成了[batch_size, sequence_length, embedding_size]

之后使用unsqueeze(1)函数使数据增加一个维度,变成[batch_size, 1, sequence_length, embedding_size]。现在的数据才能做卷积,因为在传统CNN中,输入数据就应该是[batch_size, in_channel, height, width]这种维度

[batch_size, 1, 3, 2]的输入数据通过nn.Conv2d(1, 3, (2, 2))的卷积之后,得到的就是[batch_size, 3, 2, 1]的数据,由于经过ReLU激活函数是不改变维度的,所以就没画出来。最后经过一个nn.MaxPool2d((2, 1))池化,得到的数据维度就是[batch_size, 3, 1, 1]

训练

model = TextCNN().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)

# Training
for epoch in range(5000):
  for batch_x, batch_y in loader:
    batch_x, batch_y = batch_x.to(device), batch_y.to(device)
    pred = model(batch_x)
    loss = criterion(pred, batch_y)
    if (epoch + 1) % 1000 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

测试

# Test
test_text = 'i hate me'
tests = [[word2idx[n] for n in test_text.split()]]
test_batch = torch.LongTensor(tests).to(device)
# Predict
model = model.eval()
predict = model(test_batch).data.max(1, keepdim=True)[1]
if predict[0][0] == 0:
    print(test_text,"is Bad Mean...")
else:
    print(test_text,"is Good Mean!!")

完整代码如下:

'''
  code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
'''
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torch.nn.functional as F

dtype = torch.FloatTensor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 3 words sentences (=sequence_length is 3)
sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
labels = [1, 1, 1, 0, 0, 0]  # 1 is good, 0 is not good.

# TextCNN Parameter
embedding_size = 2
sequence_length = len(sentences[0]) # every sentences contains sequence_length(=3) words
num_classes = 2  # 0 or 1
batch_size = 3

word_list = " ".join(sentences).split()
vocab = list(set(word_list))
word2idx = {w: i for i, w in enumerate(vocab)}
vocab_size = len(vocab)

def make_data(sentences, labels):
  inputs = []
  for sen in sentences:
      inputs.append([word2idx[n] for n in sen.split()])

  targets = []
  for out in labels:
      targets.append(out) # To using Torch Softmax Loss function
  return inputs, targets

input_batch, target_batch = make_data(sentences, labels)
input_batch, target_batch = torch.LongTensor(input_batch), torch.LongTensor(target_batch)

dataset = Data.TensorDataset(input_batch, target_batch)
loader = Data.DataLoader(dataset, batch_size, True)

class TextCNN(nn.Module):
    def __init__(self):
        super(TextCNN, self).__init__()
        self.W = nn.Embedding(vocab_size, embedding_size)
        output_channel = 3
        self.conv = nn.Sequential(
            # conv : [input_channel(=1), output_channel, (filter_height, filter_width), stride=1]
            nn.Conv2d(1, output_channel, (2, embedding_size)),
            nn.ReLU(),
            # pool : ((filter_height, filter_width))
            nn.MaxPool2d((2, 1)),
        )
        # fc
        self.fc = nn.Linear(output_channel, num_classes)

    def forward(self, X):
      '''
      X: [batch_size, sequence_length]
      '''
      batch_size = X.shape[0]
      embedding_X = self.W(X) # [batch_size, sequence_length, embedding_size]
      embedding_X = embedding_X.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]
      conved = self.conv(embedding_X) # [batch_size, output_channel, 1, 1]
      flatten = conved.view(batch_size, -1) # [batch_size, output_channel*1*1]
      output = self.fc(flatten)
      return output

model = TextCNN().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)

# Training
for epoch in range(5000):
  for batch_x, batch_y in loader:
    batch_x, batch_y = batch_x.to(device), batch_y.to(device)
    pred = model(batch_x)
    loss = criterion(pred, batch_y)
    if (epoch + 1) % 1000 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
# Test
test_text = 'i hate me'
tests = [[word2idx[n] for n in test_text.split()]]
test_batch = torch.LongTensor(tests).to(device)
# Predict
model = model.eval()
predict = model(test_batch).data.max(1, keepdim=True)[1]
if predict[0][0] == 0:
    print(test_text,"is Bad Mean...")
else:
    print(test_text,"is Good Mean!!")
Last Modified: April 29, 2021
Archives Tip
QR Code for this page
Tipping QR Code
Leave a Comment

23 Comments
  1. ngc ngc

    我觉得他这个是用不同的卷积核对数据进行卷积

    1. mathor mathor

      @ngc是的,相当于实现不同的gram

  2. kd kd

    batch size 可以 是 说成 多少个 单词吗 ?

    1. mathor mathor

      @kd不能,在这个问题中,batchsize应该理解为多少个句子

    2. crx crx

      @mathor应该是句子的单词数?

    3. mathor mathor

      @crx不是的,sequence_length才是句子的单词数
      batchsize是句子数

  3. kou kou

    这里是不是只实现了论文里面的输入channels 为 singe_channel 的情况,我看论文里面也介绍了multichannel architecture,比如这篇博客的第一张图片描述的那样,和singel channel不同的是,其中一个channel在训练过程中保持不变,另一个channel通过反向传播进行微调(channel里保存的是word vector),这要怎么实现呢

    1. mathor mathor

      @kou这个我不太清楚,假如batchsz=1,并且只有一句话,那么这个input就应该是一个单通道的矩阵,我不太理解多通道有什么意义

  4. 五楼 五楼

    博主,要是每个句子的长度不一样会怎么样?

    1. mathor mathor

      @五楼那么在定义Dataset的部分就会报错

  5. crx crx

    你好博主,能加个联系方式吗,有些问题想要请教

  6. frankye frankye

    为什么卷积操作以后还有一个ReLU函数,我在论文中好像没看到作者用了ReLU函数。

    1. mathor mathor

      @frankye论文没写,不代表作者没用,不是所有的代码细节都要写在论文中的

  7. kaka kaka

    假如句子的长度>=4,这个代码是不是跑不通了?

    句子长度<=3的情况下,卷积以及maxpool2d后输出大小是[batch_size, output_channel, 1, 1],resize后全连接层输入维度刚好是output_channel;

    句子长度=4的情况下,卷积以及maxpool2d后输出大小是[batch_size, output_channel, 2, 1], 跟后面的全连接层维度(output_channel)不匹配了

    1. mathor mathor

      @kaka根据具体情况,需要自行修改

  8. 殇小气 殇小气

    第74行:lr=le-3.是什么意思

    1. 殇小气 殇小气

      @殇小气我用pycharme写报错:
      Unresolved reference 'le'

    2. mathor mathor

      @殇小气同学,这不是le-3,是1e-3,这是数字1

  9. NLPer NLPer

    conved = self.conv(embedding_X) # [batch_size, output_channel, 1, 1]
    conved = self.conv(embedding_X) # [batch_size, output_channel11]
    博主,我认为这个维度第一个是input_channel,好像不是batch_size

  10. dsq dsq

    line20:sequence_length = len(sentences[0]) 这里好像缺个.split(), 不过后面没用到sequence_length,整体结果没啥问题

  11. 杨森淇 杨森淇

    你好 ,句子长度 = 4 的情况下,卷积以及 maxpool2d 后输出大小是 [batch_size, output_channel, 2, 1], 跟后面的全连接层维度(output_channel)不匹配了,这个问题我也遇到了,不知道如何修改,请问,,这个有办法吗

  12. 王

    “之所以有两张 feature map,你可以理解为 batchsize 为 2”
    论文原文的意思难道不是他们在提出了一个对基本模型的延伸,用了两种卷积方法,一种是固定参数的卷积,另一种是通过反向传播更新参数的卷积吗?@(汗)关batchsize什么事啊...

  13. repairditch_dog repairditch_dog

    好困惑,我看李沐的txtcnn里面词向量是高词元数是宽,到底应该怎么样呢?