本文主要介绍一篇将 CNN 应用到 NLP 领域的一篇论文 Convolutional Neural Networks for Sentence Classification,然后给出 PyTorch 实现
论文比较短,总体流程也不复杂,最主要的是下面这张图,只要理解了这张图,就知道如何写代码了。如果你不了解 CNN,请先看我的这篇文章 CS231n 笔记:通俗理解 CNN
下图的 feature map 是将一句话中的各个词通过 WordEmbedding 得到的,feature map 的宽为 embedding 的维度,长为一句话的单词数量。例如下图中,很明显就是用一个 6 维的向量去编码每个词,并且一句话中有 9 个词
之所以有两张 feature map,你可以理解为 batchsize 为 2
其中,红色的框代表的就是卷积核。而且很明显可以看出,这是一个长宽不等的卷积核。有意思的是,卷积核的宽可以认为是 n-gram,比方说下图卷积核宽为 2,所以同时考虑了 "wait" 和 "for" 两个单词的词向量,因此可以认为该卷积是一个类似于 bigram 的模型
后面的部分就是传统 CNN 的步骤,激活、池化、Flatten,没什么好说的
代码实现(PyTorch 版)
源码来自于 nlp-tutorial,我在其基础上进行了修改(原本的代码感觉有很多问题)
- '''
- code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
- '''
- import torch
- import numpy as np
- import torch.nn as nn
- import torch.optim as optim
- import torch.utils.data as Data
- import torch.nn.functional as F
-
- dtype = torch.FloatTensor
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
下面代码就是定义一些数据,以及设置一些常规参数
- # 3 words sentences (=sequence_length is 3)
- sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
- labels = [1, 1, 1, 0, 0, 0] # 1 is good, 0 is not good.
-
- # TextCNN Parameter
- embedding_size = 2
- sequence_length = len(sentences[0]) # every sentences contains sequence_length(=3) words
- num_classes = len(set(labels)) # num_classes=2
- batch_size = 3
-
- word_list = " ".join(sentences).split()
- vocab = list(set(word_list))
- word2idx = {w: i for i, w in enumerate(vocab)}
- vocab_size = len(vocab)
数据预处理
- def make_data(sentences, labels):
- inputs = []
- for sen in sentences:
- inputs.append([word2idx[n] for n in sen.split()])
-
- targets = []
- for out in labels:
- targets.append(out) # To using Torch Softmax Loss function
- return inputs, targets
-
- input_batch, target_batch = make_data(sentences, labels)
- input_batch, target_batch = torch.LongTensor(input_batch), torch.LongTensor(target_batch)
-
- dataset = Data.TensorDataset(input_batch, target_batch)
- loader = Data.DataLoader(dataset, batch_size, True)
构建模型
- class TextCNN(nn.Module):
- def __init__(self):
- super(TextCNN, self).__init__()
- self.W = nn.Embedding(vocab_size, embedding_size)
- output_channel = 3
- self.conv = nn.Sequential(
- # conv : [input_channel(=1), output_channel, (filter_height, filter_width), stride=1]
- nn.Conv2d(1, output_channel, (2, embedding_size)),
- nn.ReLU(),
- # pool : ((filter_height, filter_width))
- nn.MaxPool2d((2, 1)),
- )
- # fc
- self.fc = nn.Linear(output_channel, num_classes)
-
- def forward(self, X):
- '''
- X: [batch_size, sequence_length]
- '''
- batch_size = X.shape[0]
- embedding_X = self.W(X) # [batch_size, sequence_length, embedding_size]
- embedding_X = embedding_X.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]
- conved = self.conv(embedding_X) # [batch_size, output_channel*1*1]
- flatten = conved.view(batch_size, -1)
- output = self.fc(flatten)
- return output
下面详细介绍一下数据在网络中流动的过程中维度的变化。输入数据是个矩阵,矩阵维度为 [batch_size, seqence_length],输入矩阵的数字代表的是某个词在整个词库中的索引(下标)
首先通过 Embedding 层,也就是查表,将每个索引转为一个向量,比方说 12 可能会变成 [0.3,0.6,0.12,...],因此整个数据无形中就增加了一个维度,变成了 [batch_size, sequence_length, embedding_size]
之后使用 unsqueeze(1)
函数使数据增加一个维度,变成 [batch_size, 1, sequence_length, embedding_size]。现在的数据才能做卷积,因为在传统 CNN 中,输入数据就应该是 [batch_size, in_channel, height, width] 这种维度
[batch_size, 1, 3, 2] 的输入数据通过 nn.Conv2d(1, 3, (2, 2))
的卷积之后,得到的就是 [batch_size, 3, 2, 1] 的数据,由于经过 ReLU 激活函数是不改变维度的,所以就没画出来。最后经过一个 nn.MaxPool2d((2, 1))
池化,得到的数据维度就是 [batch_size, 3, 1, 1]
训练
- model = TextCNN().to(device)
- criterion = nn.CrossEntropyLoss().to(device)
- optimizer = optim.Adam(model.parameters(), lr=1e-3)
-
- # Training
- for epoch in range(5000):
- for batch_x, batch_y in loader:
- batch_x, batch_y = batch_x.to(device), batch_y.to(device)
- pred = model(batch_x)
- loss = criterion(pred, batch_y)
- if (epoch + 1) % 1000 == 0:
- print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
测试
- # Test
- test_text = 'i hate me'
- tests = [[word2idx[n] for n in test_text.split()]]
- test_batch = torch.LongTensor(tests).to(device)
- # Predict
- model = model.eval()
- predict = model(test_batch).data.max(1, keepdim=True)[1]
- if predict[0][0] == 0:
- print(test_text,"is Bad Mean...")
- else:
- print(test_text,"is Good Mean!!")
完整代码如下:
- '''
- code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
- '''
- import torch
- import numpy as np
- import torch.nn as nn
- import torch.optim as optim
- import torch.utils.data as Data
- import torch.nn.functional as F
-
- dtype = torch.FloatTensor
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
-
- # 3 words sentences (=sequence_length is 3)
- sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
- labels = [1, 1, 1, 0, 0, 0] # 1 is good, 0 is not good.
-
- # TextCNN Parameter
- embedding_size = 2
- sequence_length = len(sentences[0]) # every sentences contains sequence_length(=3) words
- num_classes = 2 # 0 or 1
- batch_size = 3
-
- word_list = " ".join(sentences).split()
- vocab = list(set(word_list))
- word2idx = {w: i for i, w in enumerate(vocab)}
- vocab_size = len(vocab)
-
- def make_data(sentences, labels):
- inputs = []
- for sen in sentences:
- inputs.append([word2idx[n] for n in sen.split()])
-
- targets = []
- for out in labels:
- targets.append(out) # To using Torch Softmax Loss function
- return inputs, targets
-
- input_batch, target_batch = make_data(sentences, labels)
- input_batch, target_batch = torch.LongTensor(input_batch), torch.LongTensor(target_batch)
-
- dataset = Data.TensorDataset(input_batch, target_batch)
- loader = Data.DataLoader(dataset, batch_size, True)
-
- class TextCNN(nn.Module):
- def __init__(self):
- super(TextCNN, self).__init__()
- self.W = nn.Embedding(vocab_size, embedding_size)
- output_channel = 3
- self.conv = nn.Sequential(
- # conv : [input_channel(=1), output_channel, (filter_height, filter_width), stride=1]
- nn.Conv2d(1, output_channel, (2, embedding_size)),
- nn.ReLU(),
- # pool : ((filter_height, filter_width))
- nn.MaxPool2d((2, 1)),
- )
- # fc
- self.fc = nn.Linear(output_channel, num_classes)
-
- def forward(self, X):
- '''
- X: [batch_size, sequence_length]
- '''
- batch_size = X.shape[0]
- embedding_X = self.W(X) # [batch_size, sequence_length, embedding_size]
- embedding_X = embedding_X.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]
- conved = self.conv(embedding_X) # [batch_size, output_channel, 1, 1]
- flatten = conved.view(batch_size, -1) # [batch_size, output_channel*1*1]
- output = self.fc(flatten)
- return output
-
- model = TextCNN().to(device)
- criterion = nn.CrossEntropyLoss().to(device)
- optimizer = optim.Adam(model.parameters(), lr=1e-3)
-
- # Training
- for epoch in range(5000):
- for batch_x, batch_y in loader:
- batch_x, batch_y = batch_x.to(device), batch_y.to(device)
- pred = model(batch_x)
- loss = criterion(pred, batch_y)
- if (epoch + 1) % 1000 == 0:
- print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- # Test
- test_text = 'i hate me'
- tests = [[word2idx[n] for n in test_text.split()]]
- test_batch = torch.LongTensor(tests).to(device)
- # Predict
- model = model.eval()
- predict = model(test_batch).data.max(1, keepdim=True)[1]
- if predict[0][0] == 0:
- print(test_text,"is Bad Mean...")
- else:
- print(test_text,"is Good Mean!!")
我觉得他这个是用不同的卷积核对数据进行卷积
是的,相当于实现不同的 gram
batch size 可以 是 说成 多少个 单词吗 ?
不能,在这个问题中,batchsize 应该理解为多少个句子
应该是句子的单词数?
不是的,sequence_length 才是句子的单词数batchsize 是句子数
这里是不是只实现了论文里面的输入 channels 为 singe_channel 的情况,我看论文里面也介绍了 multichannel architecture,比如这篇博客的第一张图片描述的那样,和 singel channel 不同的是,其中一个 channel 在训练过程中保持不变,另一个 channel 通过反向传播进行微调(channel 里保存的是 word vector),这要怎么实现呢
这个我不太清楚,假如 batchsz=1,并且只有一句话,那么这个 input 就应该是一个单通道的矩阵,我不太理解多通道有什么意义
博主,要是每个句子的长度不一样会怎么样?
那么在定义 Dataset 的部分就会报错
你好博主,能加个联系方式吗,有些问题想要请教
为什么卷积操作以后还有一个 ReLU 函数,我在论文中好像没看到作者用了 ReLU 函数。
论文没写,不代表作者没用,不是所有的代码细节都要写在论文中的
假如句子的长度 >=4,这个代码是不是跑不通了?
句子长度 <=3 的情况下,卷积以及 maxpool2d 后输出大小是 [batch_size, output_channel, 1, 1],resize 后全连接层输入维度刚好是 output_channel;
句子长度 = 4 的情况下,卷积以及 maxpool2d 后输出大小是 [batch_size, output_channel, 2, 1], 跟后面的全连接层维度(output_channel)不匹配了
根据具体情况,需要自行修改
第 74 行:lr=le-3. 是什么意思
我用 pycharme 写报错:Unresolved reference 'le'
同学,这不是 le-3,是 1e-3,这是数字 1
conved = self.conv(embedding_X) # [batch_size, output_channel, 1, 1]
conved = self.conv(embedding_X) # [batch_size, output_channel11]
博主,我认为这个维度第一个是 input_channel, 好像不是 batch_size
line20:sequence_length = len (sentences [0]) 这里好像缺个.split (), 不过后面没用到 sequence_length,整体结果没啥问题
你好 ,句子长度 = 4 的情况下,卷积以及 maxpool2d 后输出大小是 [batch_size, output_channel, 2, 1], 跟后面的全连接层维度(output_channel)不匹配了,这个问题我也遇到了,不知道如何修改,请问,,这个有办法吗
“之所以有两张 feature map,你可以理解为 batchsize 为 2”
论文原文的意思难道不是他们在提出了一个对基本模型的延伸,用了两种卷积方法,一种是固定参数的卷积,另一种是通过反向传播更新参数的卷积吗?@(汗) 关 batchsize 什么事啊...
好困惑,我看李沐的 txtcnn 里面词向量是高词元数是宽,到底应该怎么样呢?