1.LSTM网络
长时间的短期记忆网络(Long Short-Term Memory Networks),很多地方翻译为长短期记忆网络,给人一种歧义,以为是网络一会儿能记很长的内容,一会儿能记很短的内容,但其实正确的翻译应该是长时间的短期记忆网络。它的本质就是能够记住很长时期内的信息
所有循环神经网络结构都是由结构完全相同的模块进行复制而成的。在普通的RNN中,这个模块非常简单,比如一个单一的$\tanh$层
LSTM也有类似的结构,唯一的区别就是中间的部分,LSTM不再只是一个单一的$\tanh$层,而使用了四个相互作用的层
不要被这个结构给吓到了,我一开始学LSTM的时候,在网上搜了很多博客,都没怎么看懂,一是因为被这个结构吓到了,二是因为很多博客写的都不好,所以拖了好久才把这个坑填了。首先,我先解释一下里面用到的符号
在网络结构图中,每条线都传递着一个向量,从一个节点中输入到另一个节点。黄色的矩阵表示的是一个神经网络层;粉红色的圆圈表示逐点操作,如向量乘法、加法等;合并的线表示把两条线上所携带的向量进行合并(比如一个是$h_{t-1}$,另一个是$x_t$,那么合并后的输出就是$[h_{t-1},x_t]$);分开的线表示将线上传递的向量复制一份,传给两个地方
2.LSTM核心思想
LSTM的关键是cell状态,即贯穿图顶部的水平线。cell状态的传输就像一条传送带,向量从整个cell中穿过,只是做了少量的线性操作,这种结构能很轻松地实现信息从整个cell中穿过而不做改变(这样就可以实现长时期地记忆保留)
LSTM也有能力向cell状态中添加或删除信息,这是由称为门(gates)的结构仔细控制的。门可以选择性的让信息通过,它们由sigmoid神经网络层和逐点相乘实现
每个LSTM有三个这样的门结构来实现控制信息(分别是forget gate 遗忘门;input gate 输入门;output gate 输出门)
3.逐步理解LSTM
3.1 遗忘门
LSTM的第一步是决定要从cell状态中丢弃什么信息,这个决定是由一个叫做forget gate layer
的sigmoid神经层来实现的。它的输入是$h_{t-1}$和$x_t$,输出是一个数值都在0~1之间的向量(向量长度和$C_{t-1}$一样),表示让$C_{t-1}$的各部分信息通过的比重,0表示不让任何信息通过,1表示让所有信息通过
思考一个具体的例子,假设一个语言模型试图基于前面所有的词预测下一个单词,在这种情况下,每个cell状态都应该包含了当前主语的性别(保留信息),这样接下来我们才能正确使用代词。但是当我们又开始描述一个新的主语时,就应该把旧主语的性别给忘了才对(忘记信息)
3.2 输入门
下一步是决定要让多少新的信息加入到cell状态中。实现这个需要包括两个步骤:首先,一个叫做input gate layer
的sigmoid层决定哪些信息需要更新。另一个$\tanh$层创建一个新的candidate向量$\tilde{C}_t$。最后,我们把这两个部分联合起来对cell状态进行更新
在我们的语言模型的例子中,我们想把新的主语性别信息添加到cell状态中,替换掉老的状态信息。有了上述的结构,我们就能够更新cell状态了,即把$C_{t-1}$更新为$C_t$。从结构图中应该能一目了然,首先我们把旧的状态$C_{t-1}$和$f_t$相乘,把一些不想保留的信息忘掉,然后加上$i_t*\tilde{C_{t}}$。这部分信息就是我们要添加的新内容
3.3 输出门
最后,我们需要决定输出什么值了。这个输出主要是依赖于cell状态$C_t$,但是是经过筛选的版本。首先,经过一个sigmoid层,它决定$C_t$中的哪些部分将会被输出。接着,我们把$C_t$通过一个$\tanh$层(把数值归一化到-1和1之间),然后把$\tanh$层的输出和simoid层计算出来的权重相乘,这样就得到了最后的输出结果
在语言模型例子中,假设我们的模型刚刚接触了一个代词,接下来可能要输出一个动词,这个输出可能就和代词的信息有关了。比如说,这个动词应该采用单数形式还是复数形式,那么我们就得把刚学到的和代词相关的信息都加入到cell状态中来,才能够进行正确的预测
讲的好哇!
太棒啦!超级好~ 清楚!@(太开心)
没有图片了大佬
学霸,图片没有了
ctrl+f5刷新
太太太感谢啦!看了很多篇,对自己的学习很有帮助!
写的太棒啦,从B站过来的