如果不了解 ResNet 的同学可以先看我的这篇博客 ResNet 论文阅读
首先实现一个 Residual Block
- import torch
- from torch import nn
- from torch.nn import functional as F
-
- class ResBlk(nn.Module):
- def __init__(self, ch_in, ch_out, stride=1):
- super(ResBlk, self).__init__()
- self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
- self.bn1 = nn.BatchNorm2d(ch_out)
-
- self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
- self.bn2 = nn.BatchNorm2d(ch_out)
-
- if ch_out == ch_in:
- self.extra = nn.Sequential()
- else:
- self.extra = nn.Sequential(
-
- # 1×1的卷积作用是修改输入x的channel
- # [b, ch_in, h, w] => [b, ch_out, h, w]
- nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
- nn.BatchNorm2d(ch_out),
- )
-
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.bn2(self.conv2(out))
-
- # short cut
- out = self.extra(x) + out
- out = F.relu(out)
-
- return out
Block 中进行了正则化处理,以使 train 过程更快更稳定。同时要考虑,如果两元素的 ch_in 和 ch_out 不匹配,进行加法时会报错,因此需要判断一下,如果不相等,就用 1×1 的卷积调整一下
测试一下
- blk = ResBlk(64, 128, stride=2)
- tmp = torch.randn(2, 64, 32, 32)
- out = blk(tmp)
- print(out.shape)
输出的 shape 大小是 torch.Size([2, 128, 16, 16])
这里解释一下,为什么有的层要专门设置 stride。对于一个 Residual block,channel 从 64 增大到 128,如果所有的 stride 都是 1,padding 也是 1,那么图片的 w 和 h 也不会变,但是 channel 增大了,此时就会导致整个网络的参数增多。而这才仅仅一个 Block,更不用说后面的 FC 以及更多 Block 了,所以 stride 不能全部设置为 1,不要让网络的参数一直增大
然后我们搭建完整的 ResNet-18
- class ResNet18(nn.Module):
- def __init__(self):
- super(ResNet18, self).__init__()
-
- self.conv1 = nn.Sequential(
- nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
- nn.BatchNorm2d(64),
- )
- # followed 4 blocks
-
- # [b, 64, h, w] => [b, 128, h, w]
- self.blk1 = ResBlk(64, 128, stride=2)
- # [b, 128, h, w] => [b, 256, h, w]
- self.blk2 = ResBlk(128, 256, stride=2)
- # [b, 256, h, w] => [b, 512, h, w]
- self.blk3 = ResBlk(256, 512, stride=2)
- # [b, 512, h, w] => [b, 512, h, w]
- self.blk4 = ResBlk(512, 512, stride=2)
-
- self.outlayer = nn.Linear(512*1*1, 10)
-
- def forward(self, x):
- x = F.relu(self.conv1(x))
-
- # 经过四个blk以后 [b, 64, h, w] => [b, 512, h, w]
- x = self.blk1(x)
- x = self.blk2(x)
- x = self.blk3(x)
- x = self.blk4(x)
-
- x = self.outlayer(x)
-
- return x
测试一下
- x = torch.randn(2, 3, 32, 32)
- model = ResNet18()
- out = model(x)
- print("ResNet:", out.shape)
结果报错了,错误信息如下
- size mismatch, m1: [2048 x 2], m2: [512 x 10] at /pytorch/aten/src/TH/generic/THTensorMath.cpp:961
问题在于我们最后定义线性层的输入维度,和上一层 Block 的输出维度不匹配,在 ResNet18 的最后一个 Block 运行结束后打印一下当前 x 的 shape,结果是 torch.Size([2, 512, 2, 2])
解决办法有很多,可以修改线性层的输入进行匹配,也可以在最后一层 Block 后面再进行一些操作,使其与 512 匹配
先给出修改后的代码,在做解释
- class ResNet18(nn.Module):
- def __init__(self):
- super(ResNet18, self).__init__()
-
- self.conv1 = nn.Sequential(
- nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
- nn.BatchNorm2d(64),
- )
- # followed 4 blocks
-
- # [b, 64, h, w] => [b, 128, h, w]
- self.blk1 = ResBlk(64, 128, stride=2)
- # [b, 128, h, w] => [b, 256, h, w]
- self.blk2 = ResBlk(128, 256, stride=2)
- # [b, 256, h, w] => [b, 512, h, w]
- self.blk3 = ResBlk(256, 512, stride=2)
- # [b, 512, h, w] => [b, 512, h, w]
- self.blk4 = ResBlk(512, 512, stride=2)
-
- self.outlayer = nn.Linear(512*1*1, 10)
-
- def forward(self, x):
- x = F.relu(self.conv1(x))
-
- # 经过四个blk以后 [b, 64, h, w] => [b, 512, h, w]
- x = self.blk1(x)
- x = self.blk2(x)
- x = self.blk3(x)
- x = self.blk4(x)
-
- # print("after conv:", x.shape) # [b, 512, 2, 2]
-
- # [b, 512, h, w] => [b, 512, 1, 1]
- x = F.adaptive_avg_pool2d(x, [1, 1])
-
- x = x.view(x.size(0), -1) # [b, 512, 1, 1] => [b, 512*1*1]
- x = self.outlayer(x)
-
- return x
这里我采用的是第二种方法,在最后一个 Block 结束以后,接了一个自适应的 pooling 层,这个 pooling 的作用是将不论输入的宽高是多少,全部输出称宽高都是 1 的 tensor,其他维度保持不变。然后再做一个 reshape 操作,将 [batchsize, 512, 1, 1]
reshape 成 [batchsize, 512*1*1]
大小的 tensor,这样就和接下来的线性层对上了,线性层的输入大小是 512,输出是 10。因此整个网络最终输出的 shape 就是 [batchsize, 10]
最后我们把之前训练 LeNet5 的代码拷贝过来,将里面的 model=LeNet5()
改为 model=ResNet18()
就行了。完整代码如下
- import torch
- from torch import nn, optim
- import torch.nn.functional as F
- from torch.utils.data import DataLoader
- from torchvision import datasets, transforms
-
-
- batch_size=32
- cifar_train = datasets.CIFAR10(root='cifar', train=True, transform=transforms.Compose([
- transforms.Resize([32, 32]),
- transforms.ToTensor(),
- ]), download=True)
-
- cifar_train = DataLoader(cifar_train, batch_size=batch_size, shuffle=True)
-
- cifar_test = datasets.CIFAR10(root='cifar', train=False, transform=transforms.Compose([
- transforms.Resize([32, 32]),
- transforms.ToTensor(),
- ]), download=True)
-
- cifar_test = DataLoader(cifar_test, batch_size=batch_size, shuffle=True)
-
- class ResBlk(nn.Module):
- def __init__(self, ch_in, ch_out, stride=1):
- super(ResBlk, self).__init__()
- self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
- self.bn1 = nn.BatchNorm2d(ch_out)
-
- self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
- self.bn2 = nn.BatchNorm2d(ch_out)
-
- if ch_out == ch_in:
- self.extra = nn.Sequential()
- else:
- self.extra = nn.Sequential(
-
- # 1×1的卷积作用是修改输入x的channel
- # [b, ch_in, h, w] => [b, ch_out, h, w]
- nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
- nn.BatchNorm2d(ch_out),
- )
-
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.bn2(self.conv2(out))
-
- # short cut
- out = self.extra(x) + out
- out = F.relu(out)
-
- return out
-
- class ResNet18(nn.Module):
- def __init__(self):
- super(ResNet18, self).__init__()
-
- self.conv1 = nn.Sequential(
- nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
- nn.BatchNorm2d(64),
- )
- # followed 4 blocks
-
- # [b, 64, h, w] => [b, 128, h, w]
- self.blk1 = ResBlk(64, 128, stride=2)
- # [b, 128, h, w] => [b, 256, h, w]
- self.blk2 = ResBlk(128, 256, stride=2)
- # [b, 256, h, w] => [b, 512, h, w]
- self.blk3 = ResBlk(256, 512, stride=2)
- # [b, 512, h, w] => [b, 512, h, w]
- self.blk4 = ResBlk(512, 512, stride=2)
-
- self.outlayer = nn.Linear(512*1*1, 10)
-
- def forward(self, x):
- x = F.relu(self.conv1(x))
-
- # 经过四个blk以后 [b, 64, h, w] => [b, 512, h, w]
- x = self.blk1(x)
- x = self.blk2(x)
- x = self.blk3(x)
- x = self.blk4(x)
-
- # print("after conv:", x.shape) # [b, 512, 2, 2]
-
- # [b, 512, h, w] => [b, 512, 1, 1]
- x = F.adaptive_avg_pool2d(x, [1, 1])
-
- x = x.view(x.size(0), -1) # [b, 512, 1, 1] => [b, 512*1*1]
- x = self.outlayer(x)
-
- return x
-
- def main():
-
- ########## train ##########
- #device = torch.device('cuda')
- #model = ResNet18().to(device)
- criteon = nn.CrossEntropyLoss()
- model = ResNet18()
- optimizer = optim.Adam(model.parameters(), 1e-3)
- for epoch in range(1000):
- model.train()
- for batchidx, (x, label) in enumerate(cifar_train):
- #x, label = x.to(device), label.to(device)
- logits = model(x)
- # logits: [b, 10]
- # label: [b]
- loss = criteon(logits, label)
-
- # backward
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- print('train:', epoch, loss.item())
-
- ########## test ##########
- model.eval()
- with torch.no_grad():
- total_correct = 0
- total_num = 0
- for x, label in cifar_test:
- # x, label = x.to(device), label.to(device)
-
- # [b]
- logits = model(x)
- # [b]
- pred = logits.argmax(dim=1)
- # [b] vs [b]
- total_correct += torch.eq(pred, label).float().sum().item()
- total_num += x.size(0)
- acc = total_correct / total_num
- print('test:', epoch, acc)
-
- if __name__ == '__main__':
- main()
ResNet 和 LeNet 相比,准确率提升的很快,但是由于层数增加,不可避免的会导致运行时间增加,如果没有 GPU,运行一个 epoch 大概要 15 分钟。读者同样可以在此基础上修改网络结构,运用一些 tricks,比方说一开始就对图片做一个 Normalize 等