MENU

CIFAR-10 数据集实战 —— 构建 ResNet18 神经网络

January 21, 2020 • Read: 4402 • Deep Learning阅读设置

如果不了解 ResNet 的同学可以先看我的这篇博客 ResNet 论文阅读

首先实现一个 Residual Block

  • import torch
  • from torch import nn
  • from torch.nn import functional as F
  • class ResBlk(nn.Module):
  • def __init__(self, ch_in, ch_out, stride=1):
  • super(ResBlk, self).__init__()
  • self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
  • self.bn1 = nn.BatchNorm2d(ch_out)
  • self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
  • self.bn2 = nn.BatchNorm2d(ch_out)
  • if ch_out == ch_in:
  • self.extra = nn.Sequential()
  • else:
  • self.extra = nn.Sequential(
  • # 1×1的卷积作用是修改输入x的channel
  • # [b, ch_in, h, w] => [b, ch_out, h, w]
  • nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
  • nn.BatchNorm2d(ch_out),
  • )
  • def forward(self, x):
  • out = F.relu(self.bn1(self.conv1(x)))
  • out = self.bn2(self.conv2(out))
  • # short cut
  • out = self.extra(x) + out
  • out = F.relu(out)
  • return out

Block 中进行了正则化处理,以使 train 过程更快更稳定。同时要考虑,如果两元素的 ch_in 和 ch_out 不匹配,进行加法时会报错,因此需要判断一下,如果不相等,就用 1×1 的卷积调整一下

测试一下

  • blk = ResBlk(64, 128, stride=2)
  • tmp = torch.randn(2, 64, 32, 32)
  • out = blk(tmp)
  • print(out.shape)

输出的 shape 大小是 torch.Size([2, 128, 16, 16])

这里解释一下,为什么有的层要专门设置 stride。对于一个 Residual block,channel 从 64 增大到 128,如果所有的 stride 都是 1,padding 也是 1,那么图片的 w 和 h 也不会变,但是 channel 增大了,此时就会导致整个网络的参数增多。而这才仅仅一个 Block,更不用说后面的 FC 以及更多 Block 了,所以 stride 不能全部设置为 1,不要让网络的参数一直增大

然后我们搭建完整的 ResNet-18

  • class ResNet18(nn.Module):
  • def __init__(self):
  • super(ResNet18, self).__init__()
  • self.conv1 = nn.Sequential(
  • nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
  • nn.BatchNorm2d(64),
  • )
  • # followed 4 blocks
  • # [b, 64, h, w] => [b, 128, h, w]
  • self.blk1 = ResBlk(64, 128, stride=2)
  • # [b, 128, h, w] => [b, 256, h, w]
  • self.blk2 = ResBlk(128, 256, stride=2)
  • # [b, 256, h, w] => [b, 512, h, w]
  • self.blk3 = ResBlk(256, 512, stride=2)
  • # [b, 512, h, w] => [b, 512, h, w]
  • self.blk4 = ResBlk(512, 512, stride=2)
  • self.outlayer = nn.Linear(512*1*1, 10)
  • def forward(self, x):
  • x = F.relu(self.conv1(x))
  • # 经过四个blk以后 [b, 64, h, w] => [b, 512, h, w]
  • x = self.blk1(x)
  • x = self.blk2(x)
  • x = self.blk3(x)
  • x = self.blk4(x)
  • x = self.outlayer(x)
  • return x

测试一下

  • x = torch.randn(2, 3, 32, 32)
  • model = ResNet18()
  • out = model(x)
  • print("ResNet:", out.shape)

结果报错了,错误信息如下

  • size mismatch, m1: [2048 x 2], m2: [512 x 10] at /pytorch/aten/src/TH/generic/THTensorMath.cpp:961

问题在于我们最后定义线性层的输入维度,和上一层 Block 的输出维度不匹配,在 ResNet18 的最后一个 Block 运行结束后打印一下当前 x 的 shape,结果是 torch.Size([2, 512, 2, 2])

解决办法有很多,可以修改线性层的输入进行匹配,也可以在最后一层 Block 后面再进行一些操作,使其与 512 匹配

先给出修改后的代码,在做解释

  • class ResNet18(nn.Module):
  • def __init__(self):
  • super(ResNet18, self).__init__()
  • self.conv1 = nn.Sequential(
  • nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
  • nn.BatchNorm2d(64),
  • )
  • # followed 4 blocks
  • # [b, 64, h, w] => [b, 128, h, w]
  • self.blk1 = ResBlk(64, 128, stride=2)
  • # [b, 128, h, w] => [b, 256, h, w]
  • self.blk2 = ResBlk(128, 256, stride=2)
  • # [b, 256, h, w] => [b, 512, h, w]
  • self.blk3 = ResBlk(256, 512, stride=2)
  • # [b, 512, h, w] => [b, 512, h, w]
  • self.blk4 = ResBlk(512, 512, stride=2)
  • self.outlayer = nn.Linear(512*1*1, 10)
  • def forward(self, x):
  • x = F.relu(self.conv1(x))
  • # 经过四个blk以后 [b, 64, h, w] => [b, 512, h, w]
  • x = self.blk1(x)
  • x = self.blk2(x)
  • x = self.blk3(x)
  • x = self.blk4(x)
  • # print("after conv:", x.shape) # [b, 512, 2, 2]
  • # [b, 512, h, w] => [b, 512, 1, 1]
  • x = F.adaptive_avg_pool2d(x, [1, 1])
  • x = x.view(x.size(0), -1) # [b, 512, 1, 1] => [b, 512*1*1]
  • x = self.outlayer(x)
  • return x

这里我采用的是第二种方法,在最后一个 Block 结束以后,接了一个自适应的 pooling 层,这个 pooling 的作用是将不论输入的宽高是多少,全部输出称宽高都是 1 的 tensor,其他维度保持不变。然后再做一个 reshape 操作,将 [batchsize, 512, 1, 1]reshape 成 [batchsize, 512*1*1] 大小的 tensor,这样就和接下来的线性层对上了,线性层的输入大小是 512,输出是 10。因此整个网络最终输出的 shape 就是 [batchsize, 10]

最后我们把之前训练 LeNet5 的代码拷贝过来,将里面的 model=LeNet5() 改为 model=ResNet18() 就行了。完整代码如下

  • import torch
  • from torch import nn, optim
  • import torch.nn.functional as F
  • from torch.utils.data import DataLoader
  • from torchvision import datasets, transforms
  • batch_size=32
  • cifar_train = datasets.CIFAR10(root='cifar', train=True, transform=transforms.Compose([
  • transforms.Resize([32, 32]),
  • transforms.ToTensor(),
  • ]), download=True)
  • cifar_train = DataLoader(cifar_train, batch_size=batch_size, shuffle=True)
  • cifar_test = datasets.CIFAR10(root='cifar', train=False, transform=transforms.Compose([
  • transforms.Resize([32, 32]),
  • transforms.ToTensor(),
  • ]), download=True)
  • cifar_test = DataLoader(cifar_test, batch_size=batch_size, shuffle=True)
  • class ResBlk(nn.Module):
  • def __init__(self, ch_in, ch_out, stride=1):
  • super(ResBlk, self).__init__()
  • self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
  • self.bn1 = nn.BatchNorm2d(ch_out)
  • self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
  • self.bn2 = nn.BatchNorm2d(ch_out)
  • if ch_out == ch_in:
  • self.extra = nn.Sequential()
  • else:
  • self.extra = nn.Sequential(
  • # 1×1的卷积作用是修改输入x的channel
  • # [b, ch_in, h, w] => [b, ch_out, h, w]
  • nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
  • nn.BatchNorm2d(ch_out),
  • )
  • def forward(self, x):
  • out = F.relu(self.bn1(self.conv1(x)))
  • out = self.bn2(self.conv2(out))
  • # short cut
  • out = self.extra(x) + out
  • out = F.relu(out)
  • return out
  • class ResNet18(nn.Module):
  • def __init__(self):
  • super(ResNet18, self).__init__()
  • self.conv1 = nn.Sequential(
  • nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
  • nn.BatchNorm2d(64),
  • )
  • # followed 4 blocks
  • # [b, 64, h, w] => [b, 128, h, w]
  • self.blk1 = ResBlk(64, 128, stride=2)
  • # [b, 128, h, w] => [b, 256, h, w]
  • self.blk2 = ResBlk(128, 256, stride=2)
  • # [b, 256, h, w] => [b, 512, h, w]
  • self.blk3 = ResBlk(256, 512, stride=2)
  • # [b, 512, h, w] => [b, 512, h, w]
  • self.blk4 = ResBlk(512, 512, stride=2)
  • self.outlayer = nn.Linear(512*1*1, 10)
  • def forward(self, x):
  • x = F.relu(self.conv1(x))
  • # 经过四个blk以后 [b, 64, h, w] => [b, 512, h, w]
  • x = self.blk1(x)
  • x = self.blk2(x)
  • x = self.blk3(x)
  • x = self.blk4(x)
  • # print("after conv:", x.shape) # [b, 512, 2, 2]
  • # [b, 512, h, w] => [b, 512, 1, 1]
  • x = F.adaptive_avg_pool2d(x, [1, 1])
  • x = x.view(x.size(0), -1) # [b, 512, 1, 1] => [b, 512*1*1]
  • x = self.outlayer(x)
  • return x
  • def main():
  • ########## train ##########
  • #device = torch.device('cuda')
  • #model = ResNet18().to(device)
  • criteon = nn.CrossEntropyLoss()
  • model = ResNet18()
  • optimizer = optim.Adam(model.parameters(), 1e-3)
  • for epoch in range(1000):
  • model.train()
  • for batchidx, (x, label) in enumerate(cifar_train):
  • #x, label = x.to(device), label.to(device)
  • logits = model(x)
  • # logits: [b, 10]
  • # label: [b]
  • loss = criteon(logits, label)
  • # backward
  • optimizer.zero_grad()
  • loss.backward()
  • optimizer.step()
  • print('train:', epoch, loss.item())
  • ########## test ##########
  • model.eval()
  • with torch.no_grad():
  • total_correct = 0
  • total_num = 0
  • for x, label in cifar_test:
  • # x, label = x.to(device), label.to(device)
  • # [b]
  • logits = model(x)
  • # [b]
  • pred = logits.argmax(dim=1)
  • # [b] vs [b]
  • total_correct += torch.eq(pred, label).float().sum().item()
  • total_num += x.size(0)
  • acc = total_correct / total_num
  • print('test:', epoch, acc)
  • if __name__ == '__main__':
  • main()

ResNet 和 LeNet 相比,准确率提升的很快,但是由于层数增加,不可避免的会导致运行时间增加,如果没有 GPU,运行一个 epoch 大概要 15 分钟。读者同样可以在此基础上修改网络结构,运用一些 tricks,比方说一开始就对图片做一个 Normalize 等

Last Modified: August 2, 2021
Archives Tip
QR Code for this page
Tipping QR Code