如果从官网下载数据集很慢,可以使用国内的地址 http://ai-atest.bj.bcebos.com/cifar-10-python.tar.gz
MNIST 数据集为 0~9 的数字,而 CIFAR-10 数据集为 10 类物品识别,包含飞机、车、鸟、猫等。照片大小为 32*32 的彩色图片(三通道)。每个类别大概有 6000 张照片,其中随机筛选出 5000 用来 training,剩下的 1000 用来 testing
首先引入数据集
- import torch
- from torch.utils.data import DataLoader
- from torchvision import datasets, transforms
-
- batch_size=32
-
- cifar_train = datasets.CIFAR10(root='cifar', train=True, transform=transforms.Compose([
- transforms.Resize([32, 32]),
- transforms.ToTensor(),
- ]), download=True)
-
- cifar_train = DataLoader(cifar_train, batch_size=batch_size, shuffle=True)
-
- cifar_test = datasets.CIFAR10(root='cifar', train=False, transform=transforms.Compose([
- transforms.Resize([32, 32]),
- transforms.ToTensor(),
- ]), download=True)
-
- cifar_test = DataLoader(cifar_test, batch_size=batch_size, shuffle=True)
-
- x, label = iter(cifar_train).next()
- print('x:', x.shape, 'label:', label.shape)
引入数据集以后,接下来开始编写经典的 LeNet5 神经网络
- import torch
- from torch import nn, optim
- import torch.nn.functional as F
-
- class LeNet5(nn.Module):
- """
- for CIFAR10 datasets
- """
- def __init__(self):
- super(LeNet5, self).__init__()
- self.conv_unit = nn.Sequential(
- # x: [batchsize, 3, 32, 32] => [batchsize, 6, 28, 28]
- nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5, stride=1, padding=0),
- # [batchsize, 6, 28, 28] => [batchsize, 6, 14, 14]
- nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
- # [batchsize, 6, 14, 14] => [batchsize, 16, 10, 10]
- nn.Conv2d(6, 16, 5, 1, 0),
- # [batchsize, 16, 10, 10] => [batchsize, 16, 5, 5]
- nn.AvgPool2d(2, 2, 0)
-
- )
-
- # fc_unit
- self.fc_unit = nn.Sequential(
- nn.Linear(in_features=16*5*5, out_features=120),
- nn.ReLU(),
- nn.Linear(120, 84),
- nn.ReLU(),
- nn.Linear(84, 10)
- )
-
- def forward(self, x):
- batchsize = x.size(0)
- # [b, 3, 32, 32] => [b, 16, 5, 5]
- x = self.conv_unit(x)
-
- # [b, 16, 5, 5] => [b, 16*5*5]
- x = x.view(batchsize, -1)
-
- # [b, 16*5*5] => [b, 10]
- logits = self.fc_unit(x)
-
- return logits
-
- def main():
-
- ########## train ##########
- #device = torch.device('cuda')
- #model = LeNet5().to(device)
- criteon = nn.CrossEntropyLoss()
- model = LeNet5()
- optimizer = optim.Adam(model.parameters(), 1e-3)
- for epoch in range(1000):
- model.train()
- for batchidx, (x, label) in enumerate(cifar_train):
- #x, label = x.to(device), label.to(device)
- logits = model(x)
- # logits: [b, 10]
- # label: [b]
- loss = criteon(logits, label)
-
- # backward
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- print('train:', epoch, loss.item())
-
- ########## test ##########
- model.eval()
- with torch.no_grad():
- total_correct = 0
- total_num = 0
- for x, label in cifar_test:
- # x, label = x.to(device), label.to(device)
-
- # [b]
- logits = model(x)
- # [b]
- pred = logits.argmax(dim=1)
- # [b] vs [b]
- total_correct += torch.eq(pred, label).float().sum().item()
- total_num += x.size(0)
- acc = total_correct / total_num
- print('test:', epoch, acc)
-
- if __name__ == '__main__':
- main()
从这一部分的运行情况来看,准确率在慢慢上升,但并不稳定,读者有兴趣可以尝试自己修改网络结构,使其准确率更高