MENU

CIFAR-10 数据集实战 —— 构建 LeNet5 神经网络

January 20, 2020 • Read: 3752 • Deep Learning阅读设置

CIFAR-10 数据集网站

如果从官网下载数据集很慢,可以使用国内的地址 http://ai-atest.bj.bcebos.com/cifar-10-python.tar.gz

MNIST 数据集为 0~9 的数字,而 CIFAR-10 数据集为 10 类物品识别,包含飞机、车、鸟、猫等。照片大小为 32*32 的彩色图片(三通道)。每个类别大概有 6000 张照片,其中随机筛选出 5000 用来 training,剩下的 1000 用来 testing

首先引入数据集

  • import torch
  • from torch.utils.data import DataLoader
  • from torchvision import datasets, transforms
  • batch_size=32
  • cifar_train = datasets.CIFAR10(root='cifar', train=True, transform=transforms.Compose([
  • transforms.Resize([32, 32]),
  • transforms.ToTensor(),
  • ]), download=True)
  • cifar_train = DataLoader(cifar_train, batch_size=batch_size, shuffle=True)
  • cifar_test = datasets.CIFAR10(root='cifar', train=False, transform=transforms.Compose([
  • transforms.Resize([32, 32]),
  • transforms.ToTensor(),
  • ]), download=True)
  • cifar_test = DataLoader(cifar_test, batch_size=batch_size, shuffle=True)
  • x, label = iter(cifar_train).next()
  • print('x:', x.shape, 'label:', label.shape)

引入数据集以后,接下来开始编写经典的 LeNet5 神经网络

  • import torch
  • from torch import nn, optim
  • import torch.nn.functional as F
  • class LeNet5(nn.Module):
  • """
  • for CIFAR10 datasets
  • """
  • def __init__(self):
  • super(LeNet5, self).__init__()
  • self.conv_unit = nn.Sequential(
  • # x: [batchsize, 3, 32, 32] => [batchsize, 6, 28, 28]
  • nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5, stride=1, padding=0),
  • # [batchsize, 6, 28, 28] => [batchsize, 6, 14, 14]
  • nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
  • # [batchsize, 6, 14, 14] => [batchsize, 16, 10, 10]
  • nn.Conv2d(6, 16, 5, 1, 0),
  • # [batchsize, 16, 10, 10] => [batchsize, 16, 5, 5]
  • nn.AvgPool2d(2, 2, 0)
  • )
  • # fc_unit
  • self.fc_unit = nn.Sequential(
  • nn.Linear(in_features=16*5*5, out_features=120),
  • nn.ReLU(),
  • nn.Linear(120, 84),
  • nn.ReLU(),
  • nn.Linear(84, 10)
  • )
  • def forward(self, x):
  • batchsize = x.size(0)
  • # [b, 3, 32, 32] => [b, 16, 5, 5]
  • x = self.conv_unit(x)
  • # [b, 16, 5, 5] => [b, 16*5*5]
  • x = x.view(batchsize, -1)
  • # [b, 16*5*5] => [b, 10]
  • logits = self.fc_unit(x)
  • return logits
  • def main():
  • ########## train ##########
  • #device = torch.device('cuda')
  • #model = LeNet5().to(device)
  • criteon = nn.CrossEntropyLoss()
  • model = LeNet5()
  • optimizer = optim.Adam(model.parameters(), 1e-3)
  • for epoch in range(1000):
  • model.train()
  • for batchidx, (x, label) in enumerate(cifar_train):
  • #x, label = x.to(device), label.to(device)
  • logits = model(x)
  • # logits: [b, 10]
  • # label: [b]
  • loss = criteon(logits, label)
  • # backward
  • optimizer.zero_grad()
  • loss.backward()
  • optimizer.step()
  • print('train:', epoch, loss.item())
  • ########## test ##########
  • model.eval()
  • with torch.no_grad():
  • total_correct = 0
  • total_num = 0
  • for x, label in cifar_test:
  • # x, label = x.to(device), label.to(device)
  • # [b]
  • logits = model(x)
  • # [b]
  • pred = logits.argmax(dim=1)
  • # [b] vs [b]
  • total_correct += torch.eq(pred, label).float().sum().item()
  • total_num += x.size(0)
  • acc = total_correct / total_num
  • print('test:', epoch, acc)
  • if __name__ == '__main__':
  • main()

从这一部分的运行情况来看,准确率在慢慢上升,但并不稳定,读者有兴趣可以尝试自己修改网络结构,使其准确率更高

Last Modified: August 2, 2021
Archives Tip
QR Code for this page
Tipping QR Code