MENU

多分类问题线性层和训练部分代码的构建

January 6, 2020 • Read: 3566 • Deep Learning阅读设置

如下图网络是一个十个输出(十分类问题)

首先建立三个线性层

  • import torch
  • import torch.nn.functional as F
  • # 先建立三个线性层 784=>200=>200=>10
  • w1, b1 = torch.randn(200, 784, requires_grad=True), \
  • torch.randn(200, requires_grad=True)
  • # randn内的参数分别为(ch_out, ch_cn),784=28*28,适用于常用的mnist数据集
  • w2, b2 = torch.randn(200, 200, requires_grad=True), \
  • torch.randn(200, requires_grad=True)
  • w3, b3 = torch.randn(10, 200, requires_grad=True), \
  • torch.randn(10, requires_grad=True)
  • # 第二层虽然维度和第一层一样,都是200,但是并不是没有作用,而是经历了特征变换
  • def forward(x):
  • # 经过第一层
  • x = x@w1.t() + b1
  • x = F.relu(x)
  • # 经过第二层
  • x = x@w2.t() + b2
  • x = F.relu(x)
  • # 经过最后一层
  • x = x@w3.t() + b3
  • x = F.relu(x)
  • return x # 这里返回的x没有经过sigmoid和softmax

上面完成了 tensor 和 forward 的建立,下面介绍 train 的部分

  • # 训练过程首先要建立一个优化器,引入相关工具包
  • import torch.optim as optim
  • import torch.nn as nn
  • lr = 1e-3 # learning_rate
  • # 优化器优化的目标是三个全连接层的变量
  • optimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=lr)
  • criteon = nn.CrossEntropyLoss() # 自带softmax,log,CrossEntropy
  • for epoch in range(epochs):
  • for batch_idx, (data, target) in enumerate(train_loader):
  • data = data.view(-1, 28*28)
  • logits = forward(data)
  • loss = criteon(logits, target)
  • optimizer.zero_gradr()
  • loss.backward()
  • optimizer.step()

这里先要求掌握以上代码的书写,后续需会讲解数据读取、结果验证等其他部分代码

下面给出全部代码

  • import torch
  • import torch.nn as nn
  • import torch.nn.functional as F
  • import torch.optim as optim
  • from torchvision import datasets, transforms
  • batch_size=200
  • learning_rate=0.01
  • epochs=10
  • train_loader = torch.utils.data.DataLoader(
  • datasets.MNIST('../data', train=True, download=True,
  • transform=transforms.Compose([
  • transforms.ToTensor(),
  • transforms.Normalize((0.1307,), (0.3081,))
  • ])),
  • batch_size=batch_size, shuffle=True)
  • test_loader = torch.utils.data.DataLoader(
  • datasets.MNIST('../data', train=False, transform=transforms.Compose([
  • transforms.ToTensor(),
  • transforms.Normalize((0.1307,), (0.3081,))
  • ])),
  • batch_size=batch_size, shuffle=True)
  • w1, b1 = torch.randn(200, 784, requires_grad=True),\
  • torch.zeros(200, requires_grad=True)
  • w2, b2 = torch.randn(200, 200, requires_grad=True),\
  • torch.zeros(200, requires_grad=True)
  • w3, b3 = torch.randn(10, 200, requires_grad=True),\
  • torch.zeros(10, requires_grad=True)
  • torch.nn.init.kaiming_normal_(w1)
  • torch.nn.init.kaiming_normal_(w2)
  • torch.nn.init.kaiming_normal_(w3)
  • def forward(x):
  • x = x@w1.t() + b1
  • x = F.relu(x)
  • x = x@w2.t() + b2
  • x = F.relu(x)
  • x = x@w3.t() + b3
  • x = F.relu(x)
  • return x
  • optimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate)
  • criteon = nn.CrossEntropyLoss()
  • for epoch in range(epochs):
  • for batch_idx, (data, target) in enumerate(train_loader):
  • data = data.view(-1, 28*28)
  • logits = forward(data)
  • loss = criteon(logits, target)
  • optimizer.zero_grad()
  • loss.backward()
  • # print(w1.grad.norm(), w2.grad.norm())
  • optimizer.step()
  • if batch_idx % 100 == 0:
  • print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
  • epoch, batch_idx * len(data), len(train_loader.dataset),
  • 100. * batch_idx / len(train_loader), loss.item()))
  • test_loss = 0
  • correct = 0
  • for data, target in test_loader:
  • data = data.view(-1, 28 * 28)
  • logits = forward(data)
  • test_loss += criteon(logits, target).item()
  • pred = logits.data.max(1)[1]
  • correct += pred.eq(target.data).sum()
  • test_loss /= len(test_loader.dataset)
  • print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
  • test_loss, correct, len(test_loader.dataset),
  • 100. * correct / len(test_loader.dataset)))
Last Modified: August 2, 2021
Archives Tip
QR Code for this page
Tipping QR Code
Leave a Comment