如下图网络是一个十个输出(十分类问题)
首先建立三个线性层
- import torch
- import torch.nn.functional as F
-
- # 先建立三个线性层 784=>200=>200=>10
-
- w1, b1 = torch.randn(200, 784, requires_grad=True), \
- torch.randn(200, requires_grad=True)
- # randn内的参数分别为(ch_out, ch_cn),784=28*28,适用于常用的mnist数据集
- w2, b2 = torch.randn(200, 200, requires_grad=True), \
- torch.randn(200, requires_grad=True)
- w3, b3 = torch.randn(10, 200, requires_grad=True), \
- torch.randn(10, requires_grad=True)
- # 第二层虽然维度和第一层一样,都是200,但是并不是没有作用,而是经历了特征变换
-
- def forward(x):
- # 经过第一层
- x = x@w1.t() + b1
- x = F.relu(x)
-
- # 经过第二层
- x = x@w2.t() + b2
- x = F.relu(x)
-
- # 经过最后一层
- x = x@w3.t() + b3
- x = F.relu(x)
-
- return x # 这里返回的x没有经过sigmoid和softmax
上面完成了 tensor 和 forward 的建立,下面介绍 train 的部分
- # 训练过程首先要建立一个优化器,引入相关工具包
- import torch.optim as optim
- import torch.nn as nn
-
- lr = 1e-3 # learning_rate
-
- # 优化器优化的目标是三个全连接层的变量
- optimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=lr)
- criteon = nn.CrossEntropyLoss() # 自带softmax,log,CrossEntropy
-
- for epoch in range(epochs):
- for batch_idx, (data, target) in enumerate(train_loader):
- data = data.view(-1, 28*28)
-
- logits = forward(data)
- loss = criteon(logits, target)
-
- optimizer.zero_gradr()
- loss.backward()
- optimizer.step()
这里先要求掌握以上代码的书写,后续需会讲解数据读取、结果验证等其他部分代码
下面给出全部代码
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.optim as optim
- from torchvision import datasets, transforms
-
-
- batch_size=200
- learning_rate=0.01
- epochs=10
-
- train_loader = torch.utils.data.DataLoader(
- datasets.MNIST('../data', train=True, download=True,
- transform=transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.1307,), (0.3081,))
- ])),
- batch_size=batch_size, shuffle=True)
- test_loader = torch.utils.data.DataLoader(
- datasets.MNIST('../data', train=False, transform=transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.1307,), (0.3081,))
- ])),
- batch_size=batch_size, shuffle=True)
-
-
-
- w1, b1 = torch.randn(200, 784, requires_grad=True),\
- torch.zeros(200, requires_grad=True)
- w2, b2 = torch.randn(200, 200, requires_grad=True),\
- torch.zeros(200, requires_grad=True)
- w3, b3 = torch.randn(10, 200, requires_grad=True),\
- torch.zeros(10, requires_grad=True)
-
- torch.nn.init.kaiming_normal_(w1)
- torch.nn.init.kaiming_normal_(w2)
- torch.nn.init.kaiming_normal_(w3)
-
-
- def forward(x):
- x = x@w1.t() + b1
- x = F.relu(x)
- x = x@w2.t() + b2
- x = F.relu(x)
- x = x@w3.t() + b3
- x = F.relu(x)
- return x
-
-
-
- optimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate)
- criteon = nn.CrossEntropyLoss()
-
- for epoch in range(epochs):
-
- for batch_idx, (data, target) in enumerate(train_loader):
- data = data.view(-1, 28*28)
-
- logits = forward(data)
- loss = criteon(logits, target)
-
- optimizer.zero_grad()
- loss.backward()
- # print(w1.grad.norm(), w2.grad.norm())
- optimizer.step()
-
- if batch_idx % 100 == 0:
- print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
- epoch, batch_idx * len(data), len(train_loader.dataset),
- 100. * batch_idx / len(train_loader), loss.item()))
-
-
- test_loss = 0
- correct = 0
- for data, target in test_loader:
- data = data.view(-1, 28 * 28)
- logits = forward(data)
- test_loss += criteon(logits, target).item()
-
- pred = logits.data.max(1)[1]
- correct += pred.eq(target.data).sum()
-
- test_loss /= len(test_loader.dataset)
- print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
- test_loss, correct, len(test_loader.dataset),
- 100. * correct / len(test_loader.dataset)))